

MB210-221

Модуль ввода

Руководство по эксплуатации

06.2025 версия 2.12

Содержание

История изменений	4
Введение	5
Предупреждающие сообщения	6
используемые аббревиатуры	
1 Назначение	
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики	
2.2 Изоляция узлов прибора	
2.3 Условия эксплуатации	
3 Меры безопасности	
4 Монтаж	
5 Подключение	
5.1 Рекомендации по подключению	
5.1 Рекомендации по подключению	
5.3 Назначение разъемов	
5.4 Питание	
5.5 Подключение к входам	
5.5.1 Подключение к дискретным входам датчиков типа «сухой контакт»	
5.5.2 Подключение сигналов однофазных входных цепей ~230 В	
5.5.3 Подключение трехфазных входных цепей ~230 В	
5.6 Подключение по интерфейсу Ethernet	
6 Устройство и принцип работы	
6.1 Принцип работы	
6.2 Индикация и управление	
6.3 Часы реального времени	22
6.4 Запись архива	22
6.5 Режимы обмена данными	24
6.5.1 Работа по протоколу Modbus TCP	24
6.5.2 Коды ошибок для протокола Modbus	30
6.5.3 Работа по протоколу MQTT	
6.5.4 Работа по протоколу SNMP	34
6.6 Режимы работы дискретных входов	35
6.6.1 Режимы работы входов типа «сухой контакт»	35
6.6.2 Режимы работы входов с сигналами переменного напряжения 230 В	36
7 Настройка	37
7.1 Подключение к ПО «OWEN Configurator»	
7.2 Подключение к облачному сервису OwenCloud	
7.3 Ограничение обмена данными при работе с облачным сервисом OwenCloud	
7.4 Настройка сетевых параметров	
7.5 Настройка параметров обмена по протоколу MQTT в ПО «OWEN	
Configurator»	40
7.6 Настройка параметров обмена по протоколу SNMP в ПО «OWEN Configurator»	
7.7 Пароль доступа к модулю	
7.8 Обновление встроенного ПО	
7.9 Восстановление заводских настроек	
7.10 Настройка часов реального времени	
7.11 Принудительное обнуление счетчика	

8 Техническое обслуживание	45
8.1 Общие указания	
8.2 Батарея	
9 Комплектность	48
10 Маркировка	49
11 Упаковка	50
12 Транспортирование и хранение	51
13 Гарантийные обязательства	52
ПРИЛОЖЕНИЕ А. Расчет вектора инициализации для шифрования файла архива	53
чүллышшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшшш	

История изменений

Версия	Описание изменений		
руководства			
2.11	Изменена нижняя граница напряжения "логической единицы"		
2.12	Изменено описание регистров обмена по протоколу ModBus для сброса значения		
	счётчика наработки и сброса счётчика количества включений		

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, работой и техническим обслуживанием модуля дискретного ввода МВ210-221 (в дальнейшем по тексту именуемого «прибор» или «модуль»).

Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Обозначение прибора при заказе: МВ210-221.

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное Объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые аббревиатуры

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

ПО – программное обеспечение.

ЦАП – цифро-аналоговый преобразователь.

USB— последовательный интерфейс для подключения периферийных устройств к вычислительной технике.

UTC– всемирное координированное время.

RTC– часы реального времени.

1 Назначение

Модуль предназначен для сбора данных на объектах автоматизации и передачи этих данных к ПЛК, панельным контроллерам, компьютерам или иным управляющим устройствам.

Для сбора данных прибор использует 15 дискретных входов:

- 9 дискретных входов для подключения сигналов ~230 В;
- 6 дискретных входов для подключения датчиков типа «сухой контакт».

Модуль применяется в различных областях промышленности и сельского хозяйства.

Модуль выпускается согласно ТУ 26.51.70-019-46526536-2017.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

Характеристика Значение					
Питание					
Напряжение питания	От 10 до 48 В (номинальное 24 В)				
Потребляемая мощность (при питании 24 В), не более	5 Вт				
Защита от переполюсовки напряжения питания	Есть				
Интеро	рейсы				
Интерфейс обмена	Сдвоенный Ethernet 10/100 Mbs				
Интерфейс конфигурирования	USB 2.0 (MicroUSB), Ethernet 10/100 Mbps				
	Modbus TCP;				
Поддерживаемые протоколы	MQTT;				
поддорживаемые протоколы	SNMP;				
	NTP				
Версия протокола	IPv4				
Дискретные входы для под					
Количество входов	9				
Сигнал переменного напряжения:					
Частота	От 47 до 63 Гц				
Напряжение «логической единицы»	От 80 до 264 В				
Напряжение «логического нуля»	От 0 до 10 В				
	• определение наличия или отсутствия				
	напряжения в сети;				
	• диагностика обрыва фазы в трехфазной сети;				
Режимы работы	• контроль чередования фаз;				
T GAVIMBI PAGGIBI	• подсчет наработки (моточасов);				
	• счетчик количества включений напряжения;				
	• время последнего включения и выключения				
	напряжения на входе				
Ток «логической единицы», не более	2 mA				
Дискретные входы подключени	я датчиков типа «сухой контакт»				
Количество входов	6				
Тип сигнала	«Сухой контакт»;				
TVIII OVITIANA	транзисторные ключи n-p-n типа				
Режимы работы	• определение логического уровня;				
·	• подсчет числа импульсов				
Минимальная длительность единичного импульса	1 мс (до 400 Гц)				
Сопротивление контактов (ключа)					
и соединительных проводов, подключаемых	100 Ом				
к дискретному входу, не более					
	Flash-память (архив)				
Количество циклов записи и стирания	До 100000				
Максимальный размер файла архива	2 кб				
Максимальное количество файлов архива	1000				
Минимальный период записи архива	10 секунд				
Часы реального времени					
Погрешность хода часов реального времени, не более:					

Характеристика	Значение
при температуре +25 °C	3 секунды в сутки
при температуре –40 °C	10 секунд в сутки
Тип питания	Батарея CR2032
Средний срок работы на одной батарее	6 лет
Общие пар	аметры
Габаритные размеры	(42 × 124 × 83) ±1 мм
Степень защиты корпуса	IP20
Средний срок службы	10 лет
Средняя наработка на отказ*	60 000 ฯ
Масса, не более	0,4 кг

2.2 Изоляция узлов прибора

Схема гальванически изолированных узлов и прочность гальванической изоляции приведена на рисунке 2.1.

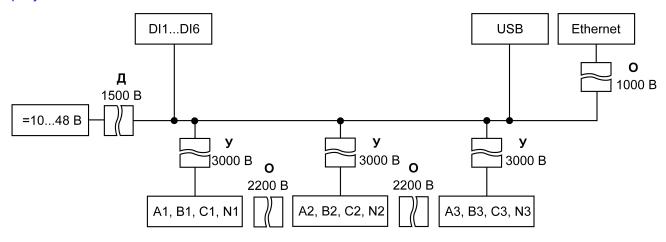


Рисунок 2.1 – Изоляция узлов прибора

Таблица 2.2 – Типы изоляции

Тип	Описание			
	Изоляция для частей оборудования, находящихся под напряжением,			
	с целью защиты от поражения электрическим током. Электрическая			
Основная (О)	прочность основной изоляции прибора проверяется типовыми испытаниями:			
	приложением испытательного переменного напряжения, величина которого			
	различна для различных цепей прибора			
	Независимая изоляция, в дополнение к основной изоляции для гарантии			
Дополнительная (Д)	защиты от поражения электрическим током в случае отказа основной			
	изоляции. Электрическая прочность дополнительной изоляции прибора			
	проверяется типовыми испытаниями испытательного переменного			
	напряжения различной величины (действующее значение)			

ПРЕДУПРЕЖДЕНИЕ

Значение прочности изоляции указано для испытаний при нормальных климатических условиях (время воздействия – 1 минута) согласно ГОСТ IEC 61131-2.

2.3 Условия эксплуатации

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ IEC 61131-2. По уровню излучения радиопомех (помехоэмиссии) прибор соответствует нормам, установленным для оборудования класса A по ГОСТ 30804.6.3. Прибор предназначен для эксплуатации в следующих условиях:

- температура окружающего воздуха от минус 40 до плюс 55 °C;
- относительная влажность воздуха от 10 % до 95 % (при +35 °C без конденсации влаги);
- атмосферное давление от 84 до 106,7 кПа;
- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- допустимая степень загрязнения 2 по ГОСТ IEC 61131-2.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует ГОСТ IEC 61131-2.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует ГОСТ IEC 61131-2.

3 Меры безопасности

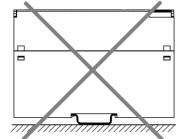
На клеммнике присутствует опасное для жизни напряжение. Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании прибора.

По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ IEC 61131-2.

Во время эксплуатации и технического обслуживания следует соблюдать требования ГОСТ 12.3.019, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Установку прибора следует производить в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам.

ВНИМАНИЕ


Запрещено использовать прибор в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4 Монтаж

Прибор устанавливается в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания влаги, грязи и посторонних предметов.

Для установки прибора следует:

- 1. Убедиться в наличии свободного пространства: необходимо 50 мм над прибором и под ним для подключения прибора и прокладки проводов.
- 2. Закрепить прибор на DIN-рейке или на вертикальной поверхности с помощью винтов (см. рисунок 4.1).

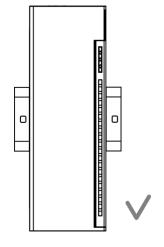
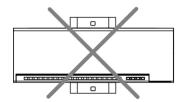



Рисунок 4.1 – Верный монтаж

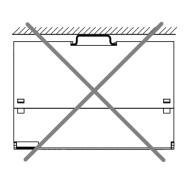
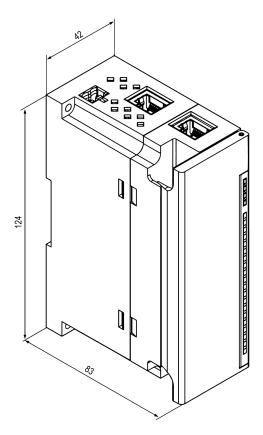



Рисунок 4.2 - Неверный монтаж

ВНИМАНИЕ

Длительная эксплуатация прибора с неверным монтажом может привести к его повреждению (см. рисунок 4.2).

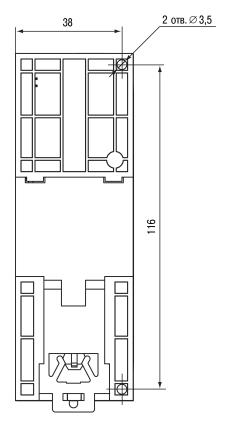


Рисунок 4.4 – Установочные размеры

5 Подключение

5.1 Рекомендации по подключению

Внешние связи монтируют проводом сечением не более 0,75 мм².

Для многожильных проводов следует использовать наконечники.

После монтажа провода следует уложить в кабельном канале корпуса прибора и закрыть крышкой.

Если необходимо снять клеммники модуля, то следует открутить два винта по углам клеммников.

Провода питания следует монтировать с помощью ответного клеммника из комплекта поставки.

ВНИМАНИЕ

Подключение и техническое обслуживание производится только при отключенном питании прибора и подключенных к нему устройств.

ВНИМАНИЕ

Запрещается подключать провода разного сечения к одной клемме.

5.2 Назначение контактов клеммника

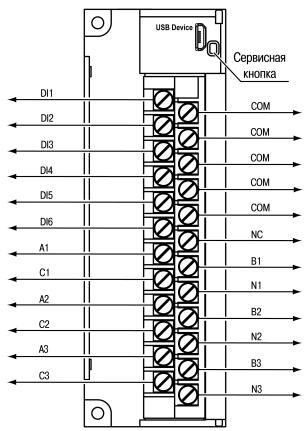


Рисунок 5.1 – Назначение контактов клемника

Наименование клеммы	Назначение		
DI1-DI6	Дискретные входы DI1–DI6		
COM	Общие точки дискретных входов DI1–DI6		
A1-A3, B1-B3, C1-C3	Входы подключения сигналов фаз А, В, С групп 1, 2, 3		
N1–N3	Входы подключения нейтрали групп 1–3		
NC (Not connected)	Нет подключения		

ВНИМАНИЕ

Не допускается подключение проводов к контактам NC (Not connected).

5.3 Назначение разъемов

Разъемы интерфейсов и питания прибора приведены на рисунке 5.2.

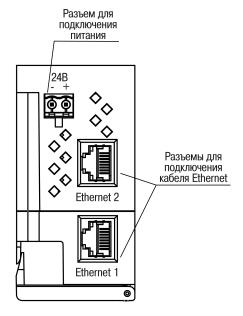


Рисунок 5.2 - Разъемы прибора

5.4 Питание

 \bigwedge

ВНИМАНИЕ

Рекомендуется применять источник питания с током нагрузки не более 8 А.

ВНИМАНИЕ

Длина кабеля питания не должна превышать 30 м.

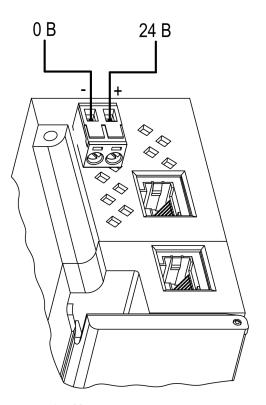


Рисунок 5.3 – Назначение контактов питания

ВНИМАНИЕ

Использование источников питания без потенциальной развязки или с базовой (основной) изоляцией цепей низкого напряжения от линий переменного тока может привести к появлению опасных напряжений в цепях.

5.5 Подключение к входам

5.5.1 Подключение к дискретным входам датчиков типа «сухой контакт»

Подключение датчиков типа «сухой контакт» приведено на рисунке 5.4.

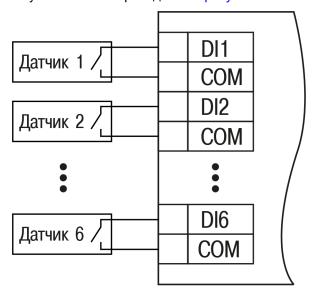


Рисунок 5.4 – Схема подключения к входам DI1-DI6 прибора

Входы прибора DI1-DI6 предназначены для подключения сигналов:

- «сухой контакт»;
- транзисторный ключ n-p-n типа.

Цепи СОМ объединены внутри прибора.

5.5.2 Подключение сигналов однофазных входных цепей ~230 В

Подключение к входам сигналов однофазной сети приведено на рисунке 5.5

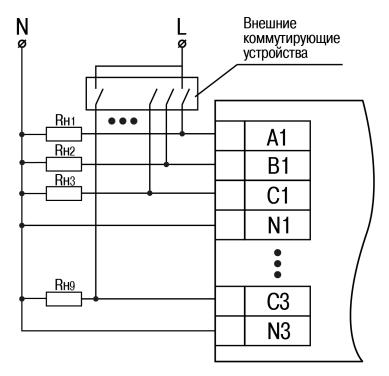
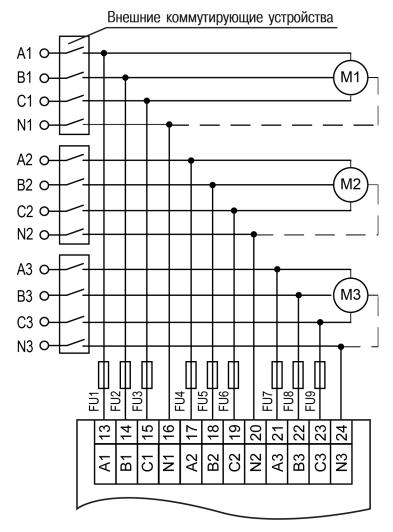


Рисунок 5.5 – Схема подключения однофазных цепей


Нейтрали N1, N2 и N3 не объединены внутри прибора. Для подключения однофазной нагрузки клеммы N1, N2 и N3 следует объединять снаружи прибора.

5.5.3 Подключение трехфазных входных цепей ~230 В

Три отдельные трехфазные цепи подключаются к девяти входам.

Нейтрали цепей не объединены внутри модуля.

Схема подключения трехфазной сети к модулю представлена на рисунке 5.6.

FU1-FU9 — плавкие предохранители 1,0 A/600 В (типа ВПТ 6-33)

Рисунок 5.6 – Схема подключения трехфазных входных цепей к прибору

ВНИМАНИЕ

Для корректной работы прибора необходимо правильно подключать входные цепи к прибору, как показано на рисунке 5.6.

Для перевода соответствующей группы входов в режим подключения трехфазной сети следует в параметре **Группировать входы в трехфазную сеть** установить значение **1** (Группировать).

5.6 Подключение по интерфейсу Ethernet

Для подключения прибора к сети Ethernet можно использовать следующие схемы:

- «Звезда» (рисунок 5.7);
- «Цепочка»/«Daisy-chain» (рисунок 5.8).

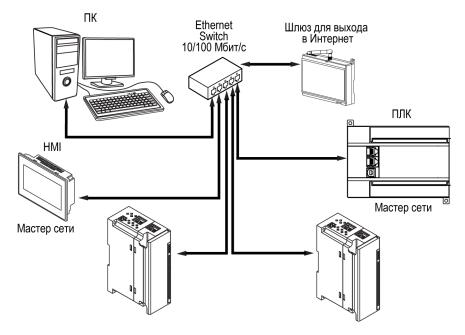


Рисунок 5.7 - Подключение по схеме «Звезда»

ПРЕДУПРЕЖДЕНИЕ

- 1. Максимальная длина линий связи 100 м.
- 2. Подключиться можно к любому Ethernet-порту прибора.
- 3. Незадействованный Ethernet-порт следует закрыть заглушкой.

Для подключения по схеме «Цепочка» следует использовать оба Ethernet-порта прибора. Если прибор вышел из строя или отключилось питание, то данные будут передаваться с порта 1 на порт 2 без разрыва связи.

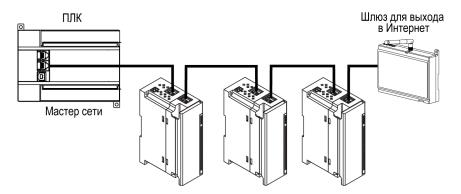


Рисунок 5.8 - Подключение по схеме «Цепочка»

ПРЕДУПРЕЖДЕНИЕ

- 1. Максимальная длина линии связи между двумя соседними активными устройствами при подключении по схеме «Цепочка» должна быть не более 100 м.
- 2. Допускается смежная схема подключения.
- 3. Незадействованный Ethernet-порт следует закрыть заглушкой.

6 Устройство и принцип работы

6.1 Принцип работы

Работой модуля управляет Мастер сети. Модуль передает в сеть данные о состоянии входов при запросе от Мастера.

Мастером может являться:

- □K;
- ПЛК;
- панель оператора;
- удаленный облачный сервис.

6.2 Индикация и управление

На лицевой панели прибора расположены элементы индикации. Расшифровка значений приведена в таблице 6.1.

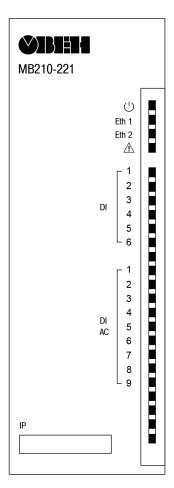


Рисунок 6.1 - Лицевая панель прибора

В нижней части лицевой панели расположено поле «IP».

ПРЕДУПРЕЖДЕНИЕ

Поле «IP» предназначено для нанесения IP-адреса модуля тонким маркером или на бумажной наклейке.

Таблица 6.1 - Назначение прибора

Индикатор	Состояние индикатора	Назначение	
Питание 🖰 (зеленый)	Включен	Напряжение питания прибора подано	
Eth 1 (зеленый)	Мигает	Передача данных по порту 1 Ethernet	
Eth 2 (зеленый)	Мигает	Передача данных по порту 2 Ethernet	
	Не светится	Сбои отсутствуют	
	Светится постоянно	Сбой основного приложения и/ или конфигурации	
Авария ⚠ (красный)*	Включается на 200 мс один раз в три секунды	Необходимо заменить батарею питания часов (напряжение батареи ниже 2 В)	
	Включается на 100 мс два раза в секунду (через паузу 400 мс)	Модуль находится в безопасном состоянии	
	Включен 900 мс, 100 мс выключен	Аппаратный сбой периферии (Flash, RTC, Ethernet Switch)	
Индикаторы состояния	Включен зеленый	Замкнутое состояние входа	
дискретных входов для подключения датчиков типа «сухой контакт».	Выключен	Разомкнутое состояние входа	
	Включен зеленый	Есть напряжение на входе	
Индикаторы состояния	Выключен	Напряжение отсутствует	
дискретных входов для	Включен красный	Обрыв фазы в трехфазной сети	
подключения сигналов ~230 В	Включен оранжевый	Сбой чередования фаз в трехфазной сети	

i

ПРИМЕЧАНИЕ

Приоритеты индикации светодиода «Авария» от большего к меньшему: аппаратный сбой, программные ошибки, безопасный режим, уровень заряда батареи.

Под лицевой панелью расположены клеммники и сервисная кнопка (рисунок 5.1).

Сервисная кнопка предназначена для выполнения следующих функций:

- восстановление заводских настроек (см. раздел 7.9);
- установка IP-адреса (см. раздел 7.4);
- обновление встроенного программного обеспечения (см. раздел 7.8).

6.3 Часы реального времени

В приборе есть встроенные часы реального времени (RTC). Часы реального времени работают от собственного батарейного источника питания.

Отсчет времени производится по UTC в секундах, начиная с 00:00 01 января 2000 года. Значение RTC используется для записи в архив.

Подробнее о настройке часов реального времени см. раздел 7.10.

6.4 Запись архива

В модуль встроена флеш-память (flash), размеченная под файловую систему с шифрованием файлов. Алгоритм шифрования — Data Encryption Standard (DES) в режиме сцепления блоков шифротекста (CBC). В качестве ключа используется строка **superkey**. Вектор инициализации генерируется с помощью хеш-функции (см. приложение A). Аргументом функции является пароль,

заданный в ПО **Owen Configurator**. В конце файла сохраняется контрольная сумма, рассчитанная по алгоритму CRC32 (контрольная сумма также шифрируется).

Архив модуля сохраняется в виде набора файлов. Период архивации, ограничение на размер одного файла и их количество задается пользователем в ПО **Owen Configurator**. Если архив полностью заполнен, то данные перезаписываются, начиная с самых старых данных самого старого файла.

Файл архива состоит из набора записей. Записи разделены символами переноса строки (0x0A0D). Каждая запись соответствует одному параметру и состоит из полей, разделенных символом «;» (без кавычек). Формат записи приведен в таблице ниже.

Таблица 6.2 – Формат записи в файле архива

Параметр	Тип	Размер	Комментарий	
Метка времени	Binary data	4 байта	В секундах начиная с 00:00 01.01.2000 (UTC+0)	
Разделитель	Строка	1 байт	Символ «;» (без кавычек)	
Уникальный идентификатор параметра (UID)	Строка	8 байт	В виде строки из НЕХ-символов с ведущими нулями	
Разделитель	Строка	1 байт	Символ «;» (без кавычек)	
Значение параметра	Строка	зависит от параметра	В виде строки из НЕХ-символов с ведущими нулями	
Разделитель	Строка	1 байт	Символ «;» (без кавычек)	
Статус параметра	Binary data	1 байт	1 – значение параметра корректно, 0 – значение параметра некорректно и его дальнейшая обработка не рекомендована	
Перенос строки	Binary data	2 байта	\n\r (0x0A0D)	

Пример

Расшифрованная запись:

где

 $0x52\ 0x82\ 0xD1\ 0x24$ — метка времени. Для получения даты и времени в формате UnixTime следует изменить порядок байт на противоположный и добавить константу-смещение (число секунд между $00:00:00\ 01.01.1970$ и $00:00:00\ 01.01.2000$): $0x24D18252\ (HEX) + 946684800\ (DEC) = 1564394971\ (DEC, соответствует 29 июля <math>2019\ r., 10:09:31$);

0х3В — разделитель;

0x30 0x30 0x30 0x30 0x61 0x39 0x30 0x30 — уникальный идентификатор параметра (00003ba00);

0х30 0х30 0х30 0х30 0х30 0х30 0х30 0х31 — значение параметра (00000001);

0х31 — статус параметра (1 – значение параметра корректно);

0x0A 0x0D — символы переноса строки.

Прибор фиксирует время в архивных файлах по встроенным часам реального времени. Также можно задать часовой пояс, который будет считываться **OwenCloud** или внешним ПО. Запись во флешпамять (flash) происходит с определенной частотой, рассчитанной таким образом, чтобы ресурса флеш-памяти (flash) прибора хватило на срок не менее 10 лет работы.

Для чтения архива можно использовать:

• облачный сервис **OwenCloud** (автоматическое чтение в случае потери и дальнейшего восстановления связи);

- ПО Owen Configurator (например, для ручного анализа);
- ПО пользователя (с помощью 20 функции Modbus).

Список архивируемых параметров доступен в **Owen Configurator** на вкладке **Информация об устройстве**. Порядок записи параметров в архив соответствует порядку параметров на вкладке.

Архив считывается с помощью 20 функции Modbus (0x14). Данная функция возвращает содержание регистров файла памяти и позволяет с помощью одного запроса прочитать одну или несколько записей из одного или нескольких файлов.

В запросе чтения файла для каждой записи указывается:

- тип ссылки 1 байт (должен быть равен 6);
- номер файла 2 байта;
- начальный адрес регистра внутри файла 2 байта;
- количество регистров для чтения 2 байта.

ПРИМЕЧАНИЕ

Номер файла в запросе по Modbus рассчитывается как 4096 + порядковый номер файла. Порядковая нумерация файлов ведется с нуля. Параметр «Последний индекс архива» содержит порядковый номер файла архива, в который последний раз записывались данные.

Количество считываемых регистров в запросе должно быть подобрано таким образом, чтобы длина ответа не превышала допустимую длину пакета Modbus (256 байт).

Размер файла архива заранее неизвестен, поэтому следует считывать порции данных с помощью отдельных запросов. Если в ответ на запрос будет получено сообщение с кодом ошибки 0x04 (MODBUS_SLAVE_DEVICE_FAILURE), то можно сделать вывод, что адреса регистров в запросе находятся за пределами файла. Чтобы считать последние данные файла, требуется уменьшить количество регистров в запросе.

ПРИМЕЧАНИЕ

Если отключить питание во время записи данных в архив, запись может не сохраниться.

6.5 Режимы обмена данными

Модуль поддерживает следующие режимы обмена данными:

- обмен с Мастером по протоколу Modbus TCP (порт 502) до 4 одновременных соединений с разными Мастерами сети;
- соединение и обмен данными с ПК с помощью ПО OWEN Configurator;
- обмен с удаленным облачным сервисом (необходим доступ в Интернет);
- обмен по протоколу MQTT;
- обмен по протоколу SNMP.

6.5.1 Работа по протоколу Modbus TCP

Таблица 6.3 – Чтение и запись параметров по протоколу Modbus TCP

Операция	Функция		
Чтение	3 (0х03) или 4 (0х04)		
Запись	6 (0х06) или 16 (0х10)		

Список регистров Modbus считывается с прибора с помощью ПО **OWEN Configurator** во вкладке **Параметры устройства**. А также список регистров Modbus представлен в таблицах ниже.

Таблица 6.4 – Общие регистры оперативного обмена по протоколу Modbus

Название	Регистр	Размер/тип/описание
Название (имя) прибора для показа пользователю (DEV)	0xF000	Символьная строка до 32 байт, кодировка Win1251
Версия встроенного ПО прибора для показа пользователю (VER)	0xF010	Символьная строка до 32 байт, кодировка Win1251
Название платформы	0xF020	Символьная строка до 32 байт, Win1251
Версия платформы	0xF030	Символьная строка до 32 байт, Win1251
Версия аппаратного обеспечения	0xF040	Символьная строка до 16 байт, Win1251
Дополнительная символьная информация	0xF048	Символьная строка до 16 байт, Win1251
Время и дата	0xF080	4 байта, в секундах с 2000 г.
Часовой пояс	0xF082	2 байта, signed short, смещение в минутах от Гринвича
Заводской номер прибора	0xF084	Символьная строка 32 байта, кодировка Win1251, используется 17 символов

Таблица 6.5 – Регистры обмена по протоколу ModBus

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
Параметр		DEC	HEX	- тип доступа	данных
Состояние дискретных входов DI1–DI6, битовая маска	063	51	0x33	Только чтение	UINT 8
Включение фильтра антидребезга для входа DI1	0 – выключено; 1 – включено	96	0x60	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI2	0 – выключено; 1 – включено	97	0x61	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI3	0 – выключено; 1 – включено	98	0x62	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI4	0 – выключено; 1 – включено	99	0x63	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI5	0 – выключено; 1 – включено	100	0x64	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI6	0 – выключено; 1 – включено	101	0x65	Чтение и запись	UINT 16
Значение счетчика импульсов для входа DI1	04294967295	160	0xA0	Только чтение	UINT 32
Значение счетчика импульсов для входа DI2	04294967295	162	0xA2	Только чтение	UINT 32
Значение счетчика импульсов для входа DI3	04294967295	164	0xA4	Только чтение	UINT 32
Значение счетчика импульсов для входа DI4	04294967295	166	0xA6	Только чтение	UINT 32

Параметр	Значение (ед. изм.)	Адрес р	егистра	Тип доступа	Формат
Параметр	эпачение (ед. изм.)	DEC	HEX	тип доступа	данных
Значение счетчика импульсов для входа DI5	04294967295	168	0xA8	Только чтение	UINT 32
Значение счетчика импульсов для входа DI6	04294967295	170	0xAA	Только чтение	UINT 32
Сброс значения счётчика импульсов для входа DI1	0 – сбросить; 1 – не сброшен	224	0xE0	Чтение и запись	UINT 16
Сброс значения счётчика импульсов для входа DI2	0 – сбросить; 1 – не сброшен	225	0xE1	Чтение и запись	UINT 16
Сброс значения счётчика импульсов для входа DI3	0 — сбросить; 1 — не сброшен	226	0xE2	Чтение и запись	UINT 16
Сброс значения счётчика импульсов для входа DI4	0 – сбросить; 1 – не сброшен	227	0xE3	Чтение и запись	UINT 16
Сброс значения счётчика импульсов для входа DI5	0 – сбросить; 1 – не сброшен	228	0xE4	Чтение и запись	UINT 16
Сброс значения счётчика импульсов для входа DI6	0 – сбросить; 1 – не сброшен	229	0xE5	Чтение и запись	UINT 16
Тайм-аут перехода в безопасное состояние	060 (секунд)	700	0x2BC	Чтение и запись	UINT 8
Разрешение конфигурирования из удаленного облачного сервиса	0 – заблокировано; 1 – разрешено	701	0x2BD	Чтение и запись	UINT 16
Управление и запись значений из удаленного облачного сервиса	0 – заблокировано; 1 – разрешено	702	0x2BE	Чтение и запись	UINT 16
Доступ к регистрам Modbus из удаленного облачного сервиса	0 – полный запрет; 1 – только чтение; 2 – только запись; 3 – полный доступ	703	0x2BF	Чтение и запись	UINT 16
Состояние батареи (напряжение)	03300 (мВ)	801	0x321	Только чтение	UINT 16
Период архивирования	103600 (секунд); заводская настройка – 30	900	0x384	Чтение и запись	UINT 16
Наличие напряжения на входах А1-В1- С3, битовая маска	0511	5000	0x1388	Только чтение	UINT 16
Группировать входы 1 в трехфазную сеть	0 – нет; 1 – группировать	5001	0x1389	Чтение и запись	UINT 16
Группировать входы 2 в трехфазную сеть	0 – нет; 1 – группировать	5002	0x138A	Чтение и запись	UINT 16
Группировать входы 3 в трехфазную сеть	0 – нет; 1 – группировать	5003	0x138B	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес р	регистра	Тип доступа	Формат
параметр	·	DEC	HEX	im gooryna	данных
Сбой чередования или пропадание фаз входов группы 1	0 – нет сбоя; 1 – сбой чередования; 2 – обрыв фазы	5007	0x138F	Только чтение	UINT 16
Сбой чередования или пропадание фаз входов группы 2	0 – нет сбоя; 1 – сбой чередования; 2 – обрыв фазы	5008	0x1390	Только чтение	UINT 16
Сбой чередования или пропадание фаз входов группы 3	0 – нет сбоя; 1 – сбой чередования; 2 – обрыв фазы	5009	0x1391	Только чтение	UINT 16
Наработка Вход А1	04294967295 (секунд)	5010	0x1392	Только чтение	UINT 32
Наработка Вход В1	04294967295 (секунд)	5012	0x1394	Только чтение	UINT 32
Наработка Вход С1	04294967295 (секунд)	5014	0x1396	Только чтение	UINT 32
Наработка Вход А2	04294967295 (секунд)	5016	0x1398	Только чтение	UINT 32
Наработка Вход В2	04294967295 (секунд)	5018	0x139A	Только чтение	UINT 32
Наработка Вход С2	04294967295 (секунд)	5020	0x139C	Только чтение	UINT 32
Наработка Вход А3	04294967295 (секунд)	E022 0v120L		Только чтение	UINT 32
Наработка Вход В3	04294967295 (секунд)	5024	0x13A0	Только чтение	UINT 32
Наработка Вход С3	04294967295 (секунд)	5026	0x13A2	Только чтение	UINT 32
Сброс значения счётчика наработки входа А1	0 – сбросить; 1 – не сброшен	5028	0x13A4	Чтение и запись	UINT 16
Сброс значения счётчика наработки входа В1	0 – сбросить; 1 – не сброшен	5029	0x13A5	Чтение и запись	UINT 16
Сброс значения счётчика наработки входа С1	0 – сбросить; 1 – не сброшен	5030	0x13A6	Чтение и запись	UINT 16
Сброс значения счётчика наработки входа А2	0 – сбросить; 1 – не сброшен	5031	0x13A7	Чтение и запись	UINT 16
Сброс значения счётчика наработки входа В2	0 – сбросить; 1 – не сброшен	5032	0x13A8	Чтение и запись	UINT 16
Сброс значения счётчика наработки входа С2	0 – сбросить; 1 – не сброшен	5033	0x13A9	Чтение и запись	UINT 16
Сброс значения счётчика наработки входа АЗ	0 – сбросить; 1 – не сброшен	5034	0x13AA	Чтение и запись	UINT 16
Сброс значения счётчика наработки входа В3	0 – сбросить; 1 – не сброшен	5035	0x13AB	Чтение и запись	UINT 16
Сброс значения счётчика наработки входа С3	0 – сбросить; 1 – не сброшен	5036	0x13AC	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)		егистра	Тип доступа	Формат данных
Счётчик количества включений входа А1	04294967295	DEC 5037	HEX 0x13AD	Только чтение	UINT 32
Счётчик количества включений входа В1	04294967295	5039	0x13AF	Только чтение	UINT 32
Счётчик количества включений входа С1	04294967295	5041	0x13B1	Только чтение	UINT 32
Счётчик количества включений входа А2	04294967295	5043	0x13B3	Только чтение	UINT 32
Счётчик количества включений входа В2	04294967295	5043	0x13B5	Только чтение	UINT 32
Счётчик количества включений входа С2	04294967295	5047	0x13B7	Только чтение	UINT 32
Счётчик количества включений входа А3	04294967295	5049	0x13B9	Только чтение	UINT 32
Счётчик количества включений входа В3	04294967295	5051	0x13BB	Только чтение	UINT 32
Счётчик количества включений входа С3	04294967295	5053	0x13BD	Только чтение	UINT 32
Сброс значения счётчика количества включений входа А1	0 – сбросить; 1 – не сброшен	5055	0x13BF	Чтение и запись	UINT 16
Сброс значения счётчика количества включений входа В1	0 – сбросить; 1 – не сброшен	5056	0x13C0	Чтение и запись	UINT 16
Сброс значения счётчика количества включений входа С1	0 — сбросить; 1 — не сброшен	5057	0x13C1	Чтение и запись	UINT 16
Сброс значения счётчика количества включений входа А2	0 — сбросить; 1 — не сброшен	5058	0x13C2	Чтение и запись	UINT 16
Сброс значения счётчика количества включений входа В2	0 — сбросить; 1 — не сброшен	5059	0x13C3	Чтение и запись	UINT 16
Сброс значения счётчика количества включений входа С2	0 — сбросить; 1 — не сброшен	5060	0x13C4	Чтение и запись	UINT 16
Сброс значения счётчика количества включений входа АЗ	0 — сбросить; 1 — не сброшен	5061	0x13C5	Чтение и запись	UINT 16
Сброс значения счётчика количества включений входа В3	0 — сбросить; 1 — не сброшен	5062	0x13C6	Чтение и запись	UINT 16
Сброс значения счётчика количества включений входа С3	0 — сбросить; 1 — не сброшен	5063	0x13C7	Чтение и запись	UINT 16
Время последнего включения и выключения входа А1	с 2000 г., дд.мм.гггг чч: мм:сс	5064	0x13C8	Только чтение	UINT 32
Время последнего включения и выключения входа В1	с 2000 г., дд.мм.гггг чч: мм:сс	5066	0x13CA	Только чтение	UINT 32
Время последнего включения и выключения входа С1	с 2000 г., дд.мм.гггг чч: мм:сс	5068	0x13CC	Только чтение	UINT 32

Параметр	Значение (ед. изм.)	Адрес р	егистра	Тип доступа	Формат
Параметр	опа тепие (ед. изм.)	DEC	HEX	тип доогупа	данных
Время последнего включения и выключения входа A2	с 2000 г, дд.мм.гггг чч: мм:сс	5070	0x13CE	Только чтение	UINT 32
Время последнего включения и выключения входа В2	с 2000 г., дд.мм.гггг чч: мм:сс	5072	0x13D0	Только чтение	UINT 32
Время последнего включения и выключения входа C2	с 2000 г., дд.мм.гггг чч: мм:сс	5074	0x13D2	Только чтение	UINT 32
Время последнего включения и выключения входа А3	с 2000 г., дд.мм.гггг чч: мм:сс	5076	0x13D4	Только чтение	UINT 32
Время последнего включения и выключения входа В3	с 2000 г., дд.мм.гггг чч: мм:сс	5078	0x13D6	Только чтение	UINT 32
Время последнего включения и выключения входа C3	с 2000 г., дд.мм.гггг чч: мм:сс	5080	0x13D8	Только чтение	UINT 32
Время в миллисекундах	_	61563	0xF07B	Только чтение	UINT 32
Новое время	с 2000 г. (секунд)	61565	0xF07D	Чтение и запись	UINT 32
Записать новое время	0 – не записывать; 1 – записать	61567	0xF07F	Чтение и запись	UINT 16
Время и дата (UTC)	с 2000 г. (секунд)	61568	0xF080	Только чтение	UINT 32
Часовой пояс	смещение в минутах от Гринвича	61570	0xF082	Чтение и запись	INT 16
МАС адрес	_	61696	0xF100	Только чтение	UINT 48
DNS сервер 1	_	12	0xC	Чтение и запись	UINT 32
DNS сервер 2	_	14	0xE	Чтение и запись	UINT 32
Установить ІР-адрес	_	20	0x14	Чтение и запись	UINT 32
Установить маску подсети	_	22	0x16	Чтение и запись	UINT 32
Установить IP-адрес шлюза	_	24	0x18	Чтение и запись	UINT 32
Текущий IP-адрес	_	26	0x1A	Только чтение	UINT 32
Текущая маска подсети	_	28	0x1C	Только чтение	UINT 32
Текущий IP-адрес шлюза	_	30	0x1E	Только чтение	UINT 32
Режим DHCP	0 – полный запрет; 1 – только чтение; 2 – только запись;	32	0x20	Чтение и запись	UINT 16
Подключение к OwenCloud	0 – выключено; 1 – включено	35	0x23	Чтение и запись	UINT 16
Статус подключения к OwenCloud	0 – нет связи; 1 – соединение; 2 – работа; 3 – ошибка; 4 – нет пароля	36	0x24	Только чтение	UINT 16
Включение/ Отключение NTP	0 — выкл.; 1 — вкл.	5632	0x1600	Чтение и запись	UINT 16
Пул NTP серверов	_	5633	0x1601	Чтение и запись	STRING 256

Попомотп	Значение (ед. изм.)	Адрес р	егистра	Тип доступа	Формат
Параметр	эпачение (ед. изм.)	DEC	HEX	- тип доступа	данных
NTP сервер 1	_	5697	0x1641	Чтение и запись	UINT 32
NTP сервер 2	_	5699	0x6143	Чтение и запись	UINT 32
Период синхронизации NTP	565535 c	5701	0x1645	Чтение и запись	UINT 16
Статус NTP	0 – отключено; 1 – опрос; 2 – синхронизировано	5702	0x1646	Чтение и запись	UINT 16
Подключение к брокеру MQTT	0 — выкл.; 1 — вкл.	5888	0x1700	Только чтение	UINT 16
Логин MQTT	_	5928	0x1728	Чтение и запись	STRING 256
Пароль MQTT	_	5960	0x1748	Чтение и запись	STRING 256
Имя устройства MQTT	_	5896	0x1708	Чтение и запись	STRING 256
Адрес брокера MQTT	_	5993	0x1769	Чтение и запись	STRING 256
Порт MQTT	065535	5891	0x1703	Чтение и запись	UINT 16
Хранение последнего сообщения MQTT	0 — выкл.; 1 — вкл.	5895	0x1707	Чтение и запись	UINT 16
Интервал публикации MQTT	5600 c	5892	0x1704	Чтение и запись	UINT 16
Качество обслуживания MQTT	0 – QoS0; 1 – QoS1; 2 – QoS2	5893	0x1705	Чтение и запись	UINT 16
Интервал Keep Alive MQTT	0600 с	5992	0x1768	Чтение и запись	UINT 16
Статус MQTT	0 – отключено; 1 – подключено; 2 – ошибка соединения	6025	0x1789	Только чтение	UINT 16
Включить (MQTTstatus)	0 — выкл.; 1 — вкл.	6026	0x178A	Чтение и запись	UINT 16
Включение/ Отключение SNMP	0 — выкл.; 1 — вкл.	5120	0x1400	Чтение и запись	UINT 16
Сообщество для чтения SNMP	_	6001	0x1771	Чтение и запись	STRING 256
Сообщество для записи SNMP	_	6017	0x1781	Чтение и запись	STRING 256
IP адрес для ловушки SNMP	_	5121	0x1401	Чтение и запись	UINT 32
Номер порта для ловушки	065535	5123	0x1403	Чтение и запись	UINT 16
Версия SNMP	0 – SNMPv1; 1 – SNMPv2	5124	0x1404	Чтение и запись	UINT 16

6.5.2 Коды ошибок для протокола Modbus

Во время работы модуля по протоколу Modbus возможно возникновение ошибок, представленных в таблице 6.6. В случае возникновения ошибки модуль отправляет Мастеру сети ответ с кодом ошибки.

Таблица 6.6 – Список возможных ошибок

Название ошибки	Возвращаемый код	Описание ошибки
MODBUS_ILLEGAL_FUNCTION	01 (0x01)	Недопустимый код функции – ошибка возникает, если модуль не поддерживает функцию Modbus, указанную в запросе
MODBUS_ILLEGAL_DATA_ ADDRESS	02 (0x02)	Недопустимый адрес регистра – ошибка возникает, если в запросе указаны адреса регистров, отсутствующие в модуле
MODBUS_ILLEGAL_DATA_ VALUE	03 (0x03)	Недопустимое значение данных – ошибка возникает, если запрос содержит недопустимое значение для записи в регистр
MODBUS_SLAVE_DEVICE_ FAILURE	04 (0x04)	Ошибка возникает, если запрошенное действие не может быть завершено

Во время обмена по протоколу Modbus модуль проверяет соответствие запросов спецификации Modbus. Не прошедшие проверку запросы игнорируются модулем. Запросы, в которых указан адрес, не соответствующий адресу модуля, также игнорируются.

Далее проверяется код функции. Если в модуль приходит запрос с кодом функции, не указанной в таблице 6.7, возникает ошибка MODBUS_ILLEGAL_FUNCTION.

Таблица 6.7 - Список поддерживаемых функций

Название функции	Код функции	Описание функции
MODBUS_READ_HOLDING_ REGISTERS	3 (0x03)	Чтение значений из одного или нескольких регистров хранения
MODBUS_READ_INPUT_ REGISTERS	4 (0x04)	Чтение значений из одного или нескольких регистров ввода
MODBUS_WRITE_SINGLE_ REGISTER	6 (0x06)	Запись значения в один регистр
MODBUS_WRITE_MULTIPLE_ REGISTERS	16 (0x10)	Запись значений в несколько регистров
MODBUS_READ_FILE_RECORD	20 (0x14)	Чтение архива из файла
MODBUS_WRITE_FILE_ RECORD	21 (0x15)	Запись архива в файл

Ситуации, приводящие к возникновению ошибок во время работы с регистрами, описаны в таблице 6.8.

Таблица 6.8 – Ошибки во время работы с регистрами

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
MODBUS_READ_ HOLDING_REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 количество запрашиваемых регистров больше максимального возможного числа (125); запрос несуществующего параметра
MODBUS_READ_INPUT_ REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 количество запрашиваемых регистров больше максимального возможного числа (125); запрос несуществующего параметра

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
		• попытка записи параметра, размер которого превышает 2 байта;
		• попытка записи параметра, доступ на запись к которому запрещен;
		• попытка записи параметра такого типа,
		запись в который не может быть
	MODBUS_ILLEGAL_DATA_	осуществлена данной функцией.
MODBUS_WRITE_SINGLE_	ADDRESS	Поддерживаемые типы:
REGISTER		• знаковые и беззнаковые целые
		(размер не более 2 байт);
		• перечисляемые;
		• float16 (на данный момент в модуле
		такой тип не используется).
		• запрос несуществующего параметра • выход за пределы максимального или
	MODBUS_ILLEGAL_DATA_	минимального ограничений для
	VALUE	параметра
		• запись несуществующего параметра;
		• попытка записи параметра, доступ на
	MODBUS ILLEGAL DATA	запись к которому запрещен;
	ADDRESS	• количество записываемых регистров
		больше максимального возможного
		числа (123)
MODBUS_WRITE_		• не найден терминирующий символ (\0)
MULTIPLE_REGISTERS		в строковом параметре;
		• размер запрашиваемых данных
	MODBUS_ILLEGAL_DATA_	меньше размера первого или
	VALUE	последнего в запросе параметра;
		• выход за пределы максимального или
		минимального ограничений для
		параметра

Ситуации, приводящие к возникновению ошибок во время работы с архивом, описаны в таблице 6.9.

Таблица 6.9 – Ошибки во время работы с архивом

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
	MODBUS_ILLEGAL_ FUNCTION	• ошибочный размер данных (0x07 <= data length <= 0xF5)
MODBUS_READ_FILE_ RECORD	MODBUS_ILLEGAL_DATA_ ADDRESS	• reference type не соответствует спецификации; • не удалось открыть файл для чтения (возможно, он отсутствует)
	MODBUS_ILLEGAL_DATA_ VALUE	• не удалось переместиться к нужному смещению в файле

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
	MODBUS_SLAVE_DEVICE_ FAILURE	 • ошибка удаления файла при запросе на удаление; • запрос слишком большого количества данных (больше 250 байт); • недопустимый record number (больше 0x270F); • недопустимый record length (больше 0x7A)
MODBUS_WRITE_FILE_ RECORD	MODBUS_ILLEGAL_ FUNCTION	• ошибочный размер данных (0х09 <= data length <= 0хFB)
	MODBUS_ILLEGAL_DATA_ ADDRESS	• reference type не соответствует спецификации; • не удалось открыть файл для записи
	MODBUS_SLAVE_DEVICE_ FAILURE	 запрашиваемый файл отсутствует; запрашиваемый файл доступен только для чтения; не удалось записать необходимое количество байт

6.5.3 Работа по протоколу MQTT

Архитектура MQTT определяет три типа устройств в сети:

- **брокер** устройство (обычно ПК с серверным ПО), которое осуществляет передачу сообщений от издателей к подписчикам;
- издатели устройства, которые являются источниками данных для подписчиков;
- подписчики устройства, которые получают данные от издателей.

Одно устройство может совмещать функции издателя и подписчика.

Рисунок 6.2 – Структурная схема обмена по протоколу MQTT

Подписка и публикация данных происходит в рамках топиков. Топик представляет собой символьную строку с кодировкой UTF-8, которая позволяет однозначно идентифицировать определенный параметр. Топики состоят из уровней, разделяемых символом «/».

i

ПРИМЕЧАНИЕ

Топики MQTT могут включать в себя заполнители – специальные символы, которые обрабатываются брокером особым образом. Существует два типа заполнителей – одноуровневый заполнитель «+» и многоуровневый заполнитель «#».

ПРЕДУПРЕЖДЕНИЕ

Топики являются чувствительными к регистру.

Структура топиков модулей: Серия/Имя устройства/Функция/Имя узла/Параметр, где:

- Серия наименование серии устройства, всегда имеет значение МХ210;
- Имя_устройства имя конкретного модуля, заданное в ПО Owen Configurator (см. раздел 7.1);
- Функция GET (чтение значений входов или выходов) или SET (запись значений выходов модуля);
- Имя_узла тип входов или выходов (DI/DI/AI/AO);
- Параметр название конкретного параметра (см. таблицу 6.10).

Таблица 6.10 - Уровни топиков модуля

Серия	Имя устрой- ства	Функция	Имя узла	Параметр	Описание	Формат значения
MX210	Device	GET	DI	MASK	Битовая маска дискретных входов	Целочисленный

Пример

1. Чтение значения дискретных входов

MX210/Device/GET/DI/MASK

Пример полученного значения: 15 (замкнуты входы 1-4)

2. Использование одноуровневого заполнителя

MX210/Device1/SET/+/COUNTER – будет получена информация о значениях счетчиков всех дискретных входов модуля, то есть этот топик эквивалентен набору топиков:

MX210/Device1/GET/DI1/COUNTER

MX210/Device1/GET/DI2/COUNTER

MX210/Device1/GET/.../COUNTER

MX210/Device1/GET/DIn/COUNTER

3. Использование многоуровневого заполнителя

MX210/Device1/GET/# – будет получена информация о всех параметрах модуля, доступных для чтения (GET), то есть этот топик эквивалентен набору топиков:

MX210/Device1/GET/DI/MASK

MX210/Device1/GET/DI1/COUNTER

MX210/Device1/GET/DI2/COUNTER

MX210/Device1/GET/.../COUNTER

MX210/Device1/GET/DIn/COUNTER

6.5.4 Работа по протоколу SNMP

Протокол основан на архитектуре «Клиент/Сервер», при этом в терминологии протокола клиенты называются **менеджерами**, а серверы – **агентами**.

Менеджеры могут производить чтение (**GET**) и запись (**SET**) параметров агентов. Агенты могут отправлять менеджерам уведомления (**трапы**) — например, о переходе оборудования в аварийное состояние.

Каждый параметр агента имеет уникальный идентификатор (**OID**), представляющий собой последовательность цифр, разделенных точками. Для упрощения настройки обмена производители устройств-агентов обычно предоставляют МІВ-файлы, которые включают в себя список параметров прибора с их названиями и идентификаторами. Эти файлы могут быть импортированы в SNMP-менеджер.

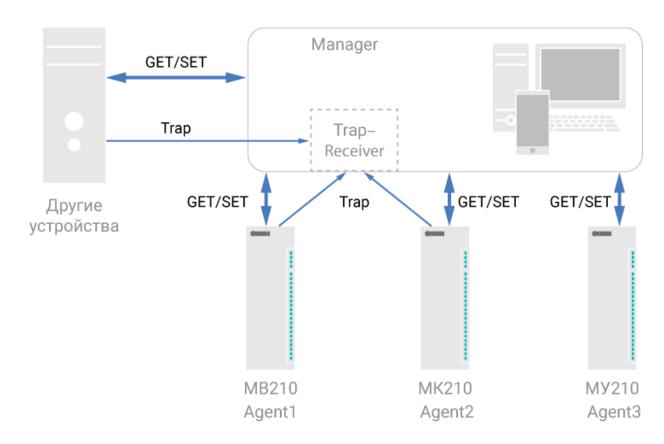


Рисунок 6.3 - Структурная схема обмена по протоколу SNMP

6.6 Режимы работы дискретных входов

6.6.1 Режимы работы входов типа «сухой контакт»

Группа входов DI1-DI6 модуля выполняет определение логического уровня.

Для каждого входа задействован счетчик импульсов, поступающих на вход.

ПРИМЕЧАНИЕ

По умолчанию счетчики входов всегда включены. Счетчики входов с дополнительными режимами включены только в том случае, если дополнительный режим у входа отключен.

Таблица 6.11 - Параметры счетчика импульсов

Параметр	Значение
Разрядность	32 бит
Максимальная частота входного сигнала	400 Гц
Подавление дребезга	Вкл./Выкл. Настраивается в ПО OWEN
	Configurator
Время подавления дребезга	25 мс (не настраивается)

ВНИМАНИЕ

Для работы с сигналами частотой более 40 Гц при скважности 0,5 и менее не следует включать подавление дребезга контактов, так как полезный сигнал будет принят за дребезг и пропущен.

Если счетчик переполнился, то соответствующий регистр обнуляется автоматически. Последовательность действий для принудительного обнуления приведена в разделе 7.11.

ПРИМЕЧАНИЕ

Счетчики входов являются энергонезависимыми, их значения сохраняются после перезагрузки модуля. Счетчики входов с дополнительными режимами после перезагрузки обнуляются.

Значения состояния дискретных входов хранятся в виде битовой маски и считываются из соответствующего регистра.

6.6.2 Режимы работы входов с сигналами переменного напряжения 230 В

Группа входов A1-A3, B1-B3, C1-C3 модуля рассчитаны на подключение сигналов переменного напряжения с уровнем «логической единицы» от 80 В до 264 В частой от 47 до 63 Гц.

К дискретным входам могут подключаться различные цепи как однофазной, так и трехфазной сетей.

Таблица 6.12 - Функции входов модуля

Функция	Описание
Наработка (моточасы) ¹⁾	Для каждого из входов задействован 32-х битный счетчик, в который записывается наработка в секундах
Счетчик количества включений напряжения1)	Для каждого из входов задействован 32-х битный счетчик включения напряжения
Время последнего включения и выключения напряжения на входе	Время записывается в UTC. При последующем включении или выключении прибора значение в регистре перезаписывается
При подключении однофазной сети	
Наличие или отсутствие напряжения в сети	Значения состояния дискретных входов хранится в виде битовой маски и считывается из соответствующего регистра
При подключении трехфазной сети	
Диагностика обрыва фазы в трехфазной сети ²⁾	При отсутствии напряжения загорается красный светодиод на диагностированных входах. Значение ошибки записывается в регистр Сбой чередования или пропадание фаз соответствующей группы
Контроль чередования фаз в трехфазной сети ²⁾ 1)В спучае переполнения счетчика регистр обнудае	При неверном чередовании фаз загораются оранжевые светодиоды в цепи, в которой происходит контроль чередования. Значение ошибки записывается в регистр Сбой чередования или пропадание фаз соответствующей группы

¹⁾В случае переполнения счетчика регистр обнуляется.

Чтобы определить неисправность при подключении трехфазной сети, в Мастере сети следует настроить контроль регистров для каждой группы входов:

- Наличие напряжения на входах А1-В1-...-С3;
- Сбой чередования или пропадание фаз.

При обрыве фазы каких-либо из входных цепей группы регистры примут значения:

- Сбой чередования или пропадание фаз = 2;
- биты соответствующего входа в регистре Наличие напряжения на входах А1-В1-...-С3 = 0.

При ошибке чередования фаз группы регистры примут значения:

• Сбой чередования или пропадание фаз = 1.

Чтобы обнулить счетчик вручную см. раздел 7.11.

²⁾ Диагностика включается при настройке модуля с помощью ПО **OWEN Configurator** или по протоколу Modbus TCP. В модуле имеется возможность подключения от одной до трех схем контроля трехфазной сети

7 Настройка

7.1 Подключение к ПО «OWEN Configurator»

Прибор настраивается в ПО OWEN Configurator.

Прибор можно подключить к ПК с помощью следующих интерфейсов:

- USB (разъем micro-USB);
- Ethernet.

Для выбора интерфейса следует:

1. Подключить прибор к ПК с помощью кабеля USB или по интерфейсу Ethernet.

|ПРЕДУПРЕЖДЕНИЕ

В случае подключения прибора к порту USB подача основного питания прибора не требуется.

Питание прибора осуществляется от порта USB.

В случае подключения по интерфейсу Ethernet следует подать основное питание на прибор.

- 2. Открыть ПО OWEN Configurator.
- 3. Выбрать Добавить устройства.
- 4. В выпадающем меню Интерфейс во вкладке Сетевые настройки выбрать:
 - Ethernet (или другую сетевую карту, к которой подключен прибор) для подключения по Ethernet.
 - STMicroelectronics Virtual COM Port для подключения по USB.

Сетевые настройки

Интерфейс

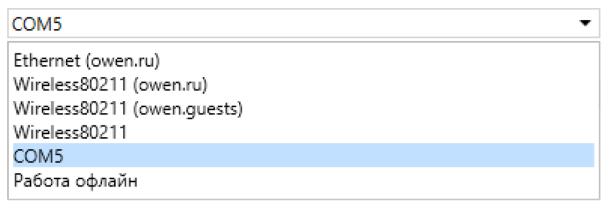


Рисунок 7.1 - Меню выбора интерфейса

Дальнейшие шаги для поиска устройства зависят от выбора интерфейса.

Чтобы найти и добавить в проект прибор, подключенный по интерфейсу Ethernet, следует:

- 1. Выбрать Найти одно устройство.
- 2. Ввести ІР-адрес подключенного устройства.
- 3. Нажать вкладку Найти. В окне отобразится прибор с указанным IP-адресом.

ПРЕДУПРЕЖДЕНИЕ

Значение ІР-адреса по умолчанию (заводская настройка) — 192.168.1.99.

4. Выбрать устройство (отметить галочкой) и нажать **ОК**. Если устройство защищено паролем, то следует ввести корректный пароль. Устройство будет добавлено в проект.

Чтобы найти и добавить в проект прибор, подключенный по интерфейсу USB, следует:

1. В выпадающем меню Протокол выбрать протокол Owen Auto Detection Protocol.

Рисунок 7.2 - Выбор протокола

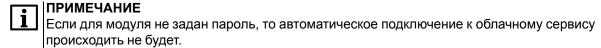
- 2. Выбрать Найти одно устройство.
- 3. Ввести адрес подключенного устройства (по умолчанию 1).
- 4. Нажать вкладку Найти. В окне отобразится прибор с указанным адресом.
- 5. Выбрать устройство (отметить галочкой) и нажать **ОК**. Если устройство защищено паролем, то следует ввести корректный пароль. Устройство будет добавлено в проект.

Более подробная информация о подключении и работе с прибором приведена в Справке ПО **OWEN Configurator**. Для вызова справки в программе следует нажать клавишу **F1**.

7.2 Подключение к облачному сервису OwenCloud

Для подключения модуля к облачному сервису следует выполнить действия:

- 1. Подключить модуль к **Owen Configurator** (см. раздел 7.1).
- 2. Включить доступ к **OwenCloud** и настроить права удаленного доступа (см. раздел 7.3).
- 3. Задать пароль для доступа к прибору (см. Справку Owen Configurator).
 - ПРЕДУПРЕЖДЕНИЕ Если пароль не задан, подключение к облачному сервису недоступно.
- 4. Зайти на сайт облачного сервиса OwenCloud.
- 5. Перейти в раздел Администрирование 🕙 и добавить прибор.


Подробный пример настройки подключения к **OwenCloud** можно посмотреть в документе «Mx210. Примеры настройки обмена» на странице прибора на сайте www.owen.ru.

7.3 Ограничение обмена данными при работе с облачным сервисом OwenCloud

Облачный сервис **OwenCloud** является надежным хранилищем данных, обмен информации с которым зашифрован модулем. Если на производстве имеются ограничения на передачу данных, то обмен данными с облачным сервисом **OwenCloud** можно отключить. По умолчанию подключение модуля к облачному сервису запрещено. Ограничение доступа и обмена данными с модулем следует настраивать в ПО **Owen Configurator**.

Для разрешения подключения в Owen Configurator следует:

- 1. Установить пароль для доступа к модулю (см. раздел 7.7).
- 2. Задать значение **Вкл.** в параметре **Подключение к OwenCloud** (рисунок 7.3).

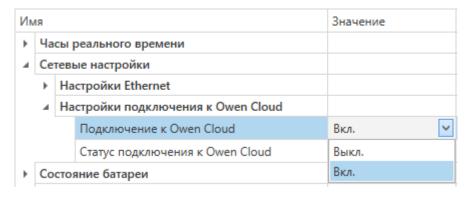


Рисунок 7.3 – Настройка автоматического подключения к облачному сервису

Если доступ к модулю через облачный сервис **OwenCloud** разрешен, то можно настроить следующие ограничения доступа (рисунок 7.4):

- Разрешение конфигурирования доступ к конфигурационным параметрам модуля;
- Управление и запись значений чтение и запись значений модуля;
- Доступ к регистрам Modbus чтение и/или запись значений регистров.

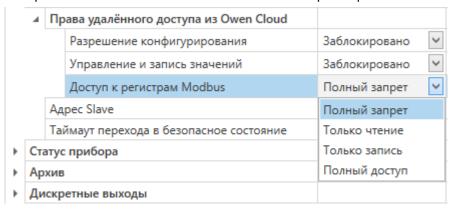


Рисунок 7.4 – Настройка удаленного доступа к модулю

7.4 Настройка сетевых параметров

Для обмена данных модуля в сети Ethernet должны быть заданы параметры, приведенные в таблице 7.1:

Таблица 7.1 - Сетевые параметры модуля

Параметр	Примечание	
МАС-адрес	Устанавливается на заводе-изготовителе и является неизменным	
ІР-адрес	Может быть статическим или динамическим. Заводская настройка – 192.168.1.99	
Маска ІР-адреса	Задает видимую модулем подсеть ІР-адресов других устройств. Заводская	
	настройка – 255.255.0.0	
ІР-адрес шлюза	Задает адрес шлюза для выхода в Интернет. Заводская настройка – 192.168.1.1	

ІР-адрес может быть:

- статический;
- динамический.

Статический IP-адрес устанавливается с помощью Owen Configurator или сервисной кнопки.

Для установки статического IP-адреса с помощью Owen Configurator следует:

- 1. Зайти во вкладку Сетевые настройки.
- 2. Задать значение в поле Установить ІР адрес.
- 3. Задать значение в поле Установить маску подсети.

4. Задать значение в поле Установить ІР адрес шлюза.

При статическом IP-адресе параметр Режим DHCP должен иметь значение Выкл.

Для установки статического ІР-адреса с помощью сервисной кнопки следует:

- 1. Подключить модуль или группу модулей к сети Ethernet.
- 2. Запустить **Owen Configurator** на ПК, подключенному к той же сети Ethernet.
- 3. Выбрать вкладку Назначение ІР-адресов.
- 4. Задать начальный ІР-адрес для первого модуля из группы модулей.
- 5. Последовательно нажимать на модулях сервисные кнопки, контролируя результат в окне программы. В окне **Owen Configurator** будет отображаться информация о модуле, на котором была нажата кнопка, этому модулю будет присваиваться заданный статический IP-адрес и другие параметры сети. После присвоения адрес автоматически увеличивается на 1.

Для назначения статического IP-адреса с помощью кнопки параметр **Режим DHCP** должен иметь значение **Разовая установка кнопкой**.

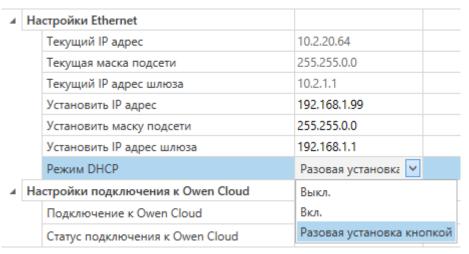


Рисунок 7.5 – Настройка параметра «Режим DHCP»

С помощью сервисной кнопки можно установить IP-адреса сразу для группы модулей (см. справку к Owen Configurator, раздел Назначение IP-адреса устройству).

Динамический IP-адрес используется для работы с облачным сервисом и не подразумевает работу с Мастером сети Modbus TCP. IP-адрес модуля устанавливается DHCP-сервером сети Ethernet.

ПРИМЕЧАНИЕ

Следует уточнить у служб системного администрирования о наличии DHCP-сервера в участке сети, к которому подключен модуль. Для использования динамического IP-адреса следует установить значение **Вкл** в параметре **Режим DHCP**.

ПРЕДУПРЕЖДЕНИЕ

Для применения новых сетевых настроек следует перезагрузить модуль. Если модуль подключен по USB, его также следует отключить.

7.5 Настройка параметров обмена по протоколу MQTT в ПО «OWEN Configurator»

Модули поддерживают протокол MQTT (версия 3.1.1) и могут использоваться в роли клиентов. Модули публикуют сообщения о состоянии своих входов и подписаны на топики, в рамках которых производится управление их выходами.

Параметры обмена по MQTT настраиваются в **Owen Configurator**.

Рисунок 7.6 – Параметры обмена по MQTT

Таблица 7.2 – Параметры обмена по протоколу MQTT

Параметр	Описание
Сообщение о присутствии	Если параметр имеет значение Вкл. , то в момент включении модуль публикует сообщение « Online » в топик MX210/Имя_устройства/ MQTTstatus . Если от модуля не поступает сообщений, брокер публикует в данный топик сообщение « Offline ».
Подключение к брокеру	Для работы с модулем по протоколу MQTT следует установить значение Вкл.
Логин Пароль	Используются для аутентификации устройства на стороне брокера. Если значения параметров не заданы, то аутентификация не используется
Имя устройства	Имя устройства. Входит в состав топика.
Адрес брокера	IP или URL брокера. Если брокер расположен во внешней сети, то следует установить для параметров Шлюз и DNS (вкладка Сетевые настройки) корректные значения
Порт	Порт брокера
Хранение последнего сообщение	Если установлено значение Включено , то другие клиенты, подписанные на топики модуля, получат последние сообщения из этих топиков
Интервал публикации	Интервал публикации данных (в секундах)
Качество обслуживания	Выбранный уровень качества обслуживания. QoS 0 — передача сообщений осуществляется без гарантии доставки. QoS 1 — передача сообщений осуществляется с гарантией доставки, но допускается дублирование сообщений (т.е. одно и тоже сообщение будет разослано подписчикам несколько раз). QoS 2 — передача сообщений осуществляется с гарантией доставки и с гарантией отсутствия дублирования сообщений.
Интервал Keep Alive (в секундах)	Если в течение промежутка времени, равного полутора значениям данного параметра, брокер не получает сообщений от модуля, то соединение будет разорвано. 0 — параметр не используется (при отсутствии сообщений соединение никогда не будет разорвано).
Статус	Статус подключения к брокеру

ПРИМЕЧАНИЕ

При использовании протокола MQTT запись параметров обычно является событийной, а не циклической. Рекомендуется задать параметр **Таймаут перехода в безопасное состояние** (вкладка **Modbus Slave**) равным 0.

7.6 Настройка параметров обмена по протоколу SNMP в ПО «OWEN Configurator»

Модули поддерживают протокол SNMP (версии SNMPv1 и SNMPv2c) и могут быть использованы в роли агентов. Модули поддерживают запросы GET и SET. Модули с дискретными входами отправляют трапы с битовой маской входов при изменении значения любого входа.

По протоколу SNMP доступны все параметры модуля. Список OID параметров приведен в Руководстве по эксплуатации на конкретный модуль. МIB-файл модуля доступен на его странице на сайте owen.ru.

4 !	SNMP		
	Включение/Отключение	Отключено	~
	Сообщество для чтения	public	
	Сообщество для записи	private	
	IP адрес для ловушки	10.2.4.78	
	Номер порта для ловушки	162	
	Версия SNMP	SNMPv1	~

Рисунок 7.7 – Параметры обмена по SNMP

Таблица 7.3 - Параметры обмена по SNMP

Параметр	Описание
Включение/Отключение	Для работы модуля по протоколу SNMP требуется установить значение Включено
Сообщество для чтения	Пароль, используемый для чтения данных модуля
Сообщество для записи	Пароль, используемый для записи данных в модуль
IP адрес для ловушки	IP-адрес, на который будет отправлен трап в случае изменения маски дискретных входов модуля (только для модулей с дискретными входами)
Номер порта для ловушки	Номер порта, на который будет отправлен трап
Версия SNMP	Версия протокола, используемая модулем (SNMPv1 или SNMPv2)

ПРИМЕЧАНИЕ

При использовании протокола SNMP без запросов чтения (**GET**) запись параметров обычно является событийной, а не циклической. Рекомендуется задать параметр **Таймаут перехода в безопасное состояние** (вкладка **Modbus Slave**) равным **0**.

Пример настройки обмена модуля по протоколу SNMP можно посмотреть в документе «Mx210. Примеры настройки обмена», который доступен на странице прибора на сайте owen.ru.

7.7 Пароль доступа к модулю

Для ограничения доступа к чтению и записи параметров конфигурации и для доступа в облачный сервис **OwenCloud** используется пароль.

Установить или изменить пароль можно с помощью ПО Owen Configurator.

В случае утери пароля следует восстановить заводские настройки.

По умолчанию пароль не задан.

7.8 Обновление встроенного ПО

Обновление встроенного ПО модуля следует выполнять с помощью интерфейса USB.

ПРИМЕЧАНИЕ

Перед обновлением ПО рекомендуется сохранить конфигурацию модуля (в меню Конфигуратора выбрать «Файл» далее «Сохранить как…»).

Для обновления встроенного ПО по интерфейсу USB следует выбрать один из способов:

- 1. С помощью Конфигуратора, используя файл прошивки с расширением *.fw;
- 2. С помощью ПО Мастер прошивки.

Обновление через Конфигуратор – рекомендовано. Второй способ подходит, если нет возможности подключить модуль к Конфигуратору. Подробная инструкция по обновлению встроенного ПО модуля находится в архиве прошивок, который доступен для скачивания на странице прибора на сайте www.owen.ru.

ПРИМЕЧАНИЕ

После обновления встроенного ПО сетевые и конфигурационные параметры сбросятся на заводские значения.

7.9 Восстановление заводских настроек

ВНИМАНИЕ

После восстановления заводских настроек все ранее установленные настройки, кроме сетевых, будут удалены.

Для восстановления заводских настроек и сброса установленного пароля следует:

- 1. Включить питание прибора.
- 2. Нажать и удерживать сервисную кнопку более 12 секунд.

После отжатия кнопки прибор перезагрузится и будет работать с настройками по умолчанию.

7.10 Настройка часов реального времени

Значение часов реального времени (RTC) можно установить или считать с прибора через регистры Modbus, а также с помощью ПО **Owen Configurator** (см. справку к **Owen Configurator**, раздел **Настройка часов**).

Для установки нового времени через регистры Modbus следует:

- 1. Записать значение времени в соответствующие регистры.
- 2. Установить на время не менее 1 секунды значение 1 в регистре обновления текущего времени.
- 3. Записать в регистр обновления текущего времени значение 0.

Следующую запись текущего времени можно выполнить через 1 секунду.

Если необходимо, то можно синхронизировать часы модуля с удаленным NTP сервером.

ı N	ТР		
	Включение/Отключение	Отключено	~
	Пул NTP серверов	pool.ntp.org	
	NTP сервер 1	192.168.1.1	
	NTP сервер 2	192.168.1.2	
	Период синхронизации	5	
	Статус	Отключено	\vee

Рисунок 7.8 - Параметры NTP

Параметр	Описание
Включение/Отключение	Для включения режима синхронизации времени следует установить значение Включено
Пул NTP серверов	IP или URL используемого пула NTP-серверов
NTP сервер 1	IP основного NTP-сервера
NTP сервер 2	IP резервного NTP-сервера

Параметр	Описание
Период синхронизации	Период синхронизации времени в секундах. Следует убедиться, что установленное значение не превышает минимально возможного значения для конкретного NTP-сервера
Статус	Статус подключения к серверу

i

ПРИМЕЧАНИЕ

Если NTP-сервер расположен во внешней сети, то следует установить корректные значения для параметров **Шлюз** и **DNS** (вкладка **Сетевые настройки**) корректные значения.

i

ПРИМЕЧАНИЕ

Часовой пояс прибора выбирается о вкладке Часы реального времени.

ПРИМЕЧАНИЕ

Если модуль подключен к облачному сервису OwenCloud как автоопределяемое устройство, то его время автоматически синхронизируется со временем облачного сервиса раз в сутки.

ПРИМЕЧАНИЕ

Все указанные NTP-сервера (в том числе сервера из пула) имеют одинаковый приоритет при опросе.

7.11 Принудительное обнуление счетчика

Если счетчик состояний входа переполнился, то соответствующий регистр обнуляется автоматически. Для принудительного обнуления счетчика следует записать значение 0 в регистр сброса значения счетчика.

8 Техническое обслуживание

8.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммников прибора.

8.2 Батарея

В приборе используется сменная батарея типа CR2032. Батарея предназначена для питания часов реального времени.

Если заряд батареи опускается ниже 2 В, то индикатор "Авария" засвечивается на 100 мс один раз в две секунды. Такое свечение индикатора сигнализирует о необходимости замены батареи.

Если напряжение батареи часов реального времени меньше 1,6 В, то запись конфигурационных параметров выполняется во флеш-память модуля.

Порядок записи конфигурационных параметров при разряженной батарее:

- 1. Новые значения конфигурационных параметров записываются в батарейный ОЗУ около 5 секунд.
- 2. Из батарейного ОЗУ значения конфигурационных параметров переносятся во флеш-память и запускается таймаут не менее 2 минут (в зависимости от нагрузки на модуль).

ПРИМЕЧАНИЕ

Состояния батареи обновляется после подачи питания или по истечении 12 часов с момента подачи питания.

ПРЕДУПРЕЖДЕНИЕ

Не рекомендуется выполнять циклическую запись конфигурационных параметров в случае разряда батареи. Ресурс флеш памяти ограничен.

Для замены батареи следует:

- 1. Отключить питание прибора и подключенных устройств.
- 2. Снять прибор с DIN-рейки.
- 3. Поднять крышку 1.
- 4. Выкрутить два винта 3.
- 5. Снять колодку 2, как показано на рисунке 8.1.

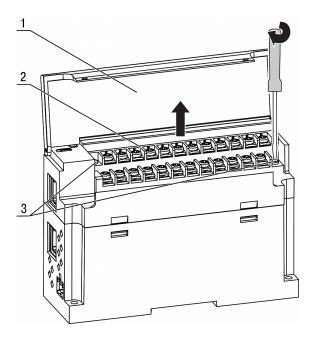


Рисунок 8.1 - Отсоединение клемм

6. Поочередно вывести зацепы из отверстий с одной и другой стороны корпуса и снять верхнюю крышку.

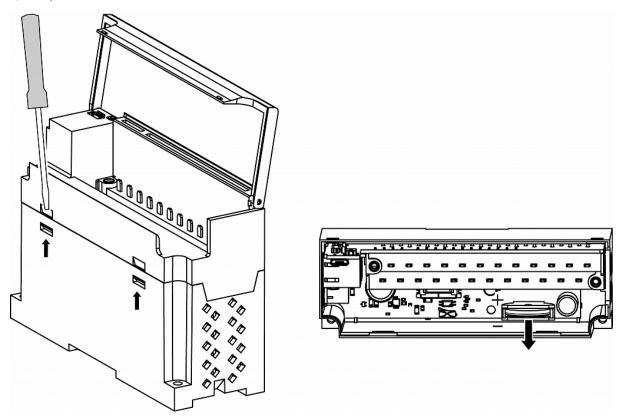


Рисунок 8.2 – Замена батареи

- 7. Заменить батарею. Рекомендуемое время замены батареи не более 1 минуты. Если замена батареи займет больше времени, то следует ввести корректное значение часов реального времени.
- 8. Сборку и установку следует осуществлять в обратном порядке.

1

ПРЕДУПРЕЖДЕНИЕ

Запрещается использовать батарею другого типа. Во время установки батареи следует соблюдать полярность.

После сборки и включения прибора следует убедиться в корректности показаний часов. В случае необходимости следует скорректировать показания часов реального времени в ПО **OWEN Configurator**.

Во время выкручивания винтов крепления клеммная колодка поднимается, поэтому, чтобы избежать перекоса рекомендуется выкручивать винты поочередно по несколько оборотов за один раз.

9 Комплектность

Наименование	Количество
Модуль	1 шт.
Паспорт и Гарантийный талон	1 экз.
Руководство по эксплуатации	1 экз.
Коммутационный кабель UTP 5e 150 мм	1 шт.
Клемма питания 2EGTK-5-02P-14	1 шт.
Заглушка разъема RJ45 (Ethernet)	1 шт.

ПРИМЕЧАНИЕИзготовитель оставляет за собой право внесения дополнений в комплектность модуля.

10 Маркировка

На корпус прибора нанесены:

- наименование и условное обозначение прибора;
- степень защиты корпуса по ГОСТ 14254-2015;
- род питающего тока и напряжение питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ IEC 61131-2-2012;
- единый знак обращения продукции на рынке Евразийского экономического союза;
- страна-изготовитель;
- заводской номер прибора, дата изготовления, товарный знак ОВЕН;
- МАС-адрес;
- год изготовления прибора.

На потребительскую тару нанесены:

- наименование и условное обозначение прибора;
- единый знак обращения продукции на рынке Евразийского экономического союза;
- почтовый адрес офиса компании;
- страна-изготовитель;
- штрих код;
- заводской номер прибора;
- дата упаковки прибора.

11 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

12 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Транспортирование приборов в упаковке предприятия-изготовителя должно соответствовать следующим условиям:

- температура окружающего воздуха от минус 40 до плюс 70 °C;
- относительная влажность от 10 до 95 % без конденсации влаги;
- атмосферное давление не менее 80 кПа (эквивалентно высоте 3000 м над уровнем моря)

Прибор следует перевозить в транспортной таре поштучно или в контейнерах с соблюдением мер защиты от ударов и вибраций.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

13 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Расчет вектора инициализации для шифрования файла архива

Для расшифровки файла архива в качестве вектора инициализации следует использовать хешфункцию. Хешфункция должна возвращать 8 байт (тип long long).

Пример реализации хеш-функции на языке программирования С:

```
typedef union {
       struct {
               unsigned long lo;
               unsigned long hi;
        };
        long long hilo;
}LONG LONG;
long long Hash8(const char *str) { // На основе Rot13
       LONG_LONG temp;
        temp.lo = 0;
        temp.hi = 0;
        for ( ; *str; )
        {
                temp.lo += (unsigned char) (*str);
                temp.lo -= (temp.lo << 13) | (temp.lo >> 19);
                str++;
                if (!str) break;
                temp.hi += (unsigned char) (*str);
                temp.hi -= (temp.hi << 13) | (temp.hi >> 19);
                str++;
        return temp.hilo;
}
```


Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru

рег.:1-RU-35719-2.12